Pengertiankuartil bawah atau kuartil pertama (Q1) merupakan nilai tengah antara nilai terkecil dan median dari kelompok data. Kuartil pertama menjadi penanda bahwa data pada kuartil tersebut berada 25% dari bawah pada kelompok data. Dikutip dari buku Cerdas Belajar Matematika untuk Kelas XI Sekolah Menengah Atas yang ditulis oleh Marthen Kanginan (2013: 20), berikut adalah rumus kuartil bawah Adatiga kuartil pada data kelompok, yakni kuartil bawah, kuartil tengah, dan kuartil atas. Rumus kuartil data kelompok diberikan seperti persamaan di bawah ini. Keterangan : i = 1 untuk kuartil bawah i = 2 untuk kuartil tengah i = 3 untuk kuartil atas Tb adalah tepi bawah kelas kuartil n adalah jumlah seluruh frekuensi Kuartilterdiri atas tiga macam, yaitu kuartil pertama atau kuartil bawah (Q1), kuartil kedua atau kuartil tengah atau median (Q2), dan kuartil ketiga atau kuartil atas (Q3). Langkah pertama yang Anda harus lakukan untuk menentukan nilai-nilai kuartil dari suatu data yaitu mengurutkan data tersebut dari datum terkecil ke datum terbesar. Adatiga nilai kuartil data kelompok, yaitu bawah, tengah, dan kuartil atas. Rumus kuartil data kelompok diberi seperti persamaan di bawah ini. Keterangan Rumus: i adalah 1 kuartil bawah i adalah 2 kuartil tengah i adalah 3 kuartil atas Tb adalah tepi bawah kelas kuartil n adalah jumlah seluruh frekuensi ο»ΏKuartilpada suatu data dapat didapatkan dengan cara membagi data tersebut secara terurut kedalam empat bagian yang memiliki nilai sama besar. Kuartil itu sendiri terdiri atas tiga macam, yaitu diantaranya: Kuartil bawah ( Q1) Kuartil tengah / median ( Q2) Kuartil atas ( Q3) Denganmenggunakan metode ini, nilai kuartil atas dan bawah selalu merupakan dua titik data. Langkah 3. Q2 = 5, karena mediannya adalah 5. Ada cara lain untuk menemukan kuartil, yaitu menggunakan Metode Turki, misalnya: Bagilah himpunan berikut menjadi empat bagian yang sama (dengan metode Turki): {6, 3, 4, 9, 6, 2, 7, 7, 8, 4, 10} Kuartilatas/akhir atau disebut juga kuartil ketiga, adalah 25% bilangan teratas dari sekumpulan data, atau bagian ke-75 dari perseratus. Kuartil atas dihitung dengan menentukan median (nilai tengah) dalam setengah bagian atas dari sekumpulan data. [2] Nilai tersebut dapat diperoleh dengan menghitung menggunakan bolpoin dan kertas. j3V0E03. Contoh cara menghitung kuartil pada data tunggal, misalnya terdapat sepuluh data terurut 3, 4, 5, 6, 8, 8, 8, 9, 9, dan 10. Nilai kuartil tengah Q2 berada di antara data ke-5 dan data ke-6, sehingga nilai kuartil tengah adalah Q2=8+8 2 = 8. Nilai kuartil tengah membagi data menjadi dua sama banyak. Setengah bagian pertama dari data terutut tersebut adalah 3, 4, 5, 6, 8, dan 8 sementara setengah data terurut lainnya adalah 8, 8, 9, 9, dan 10. Pada setengah bagian pertama memuat nilai kuarti bawah Q1, sedangkan setengah bagian kedua memuat nilai kuarti atas Q3. Dari setengah bagian data pertama memuat nilai kuarti bawah Q1. Di mana, nilai kuartil pada contoh data yang diberikan terdapat pada data ke-3 yaitu nilai yang membagi data menjadi dua sama banyak. Sehingga nilai kuartil bawah dari data tersebut adalah Q1= 5. Selanjutnya, setengah bagian kedua dari dari data terurut yaitu 8, 8, 9, 9, dan 10 memuat nilai kuarti atas Q3. Nilai yang membagi dua data tersebut sama banyak juga terdapat pada urutan data ke-3 dari setengah bagian data kedua atau data ke-8 dari semua data. Sehingga kuartil atas dari data adalah Q3= 9. Dengan demikian diperoleh nilai untuk kuartil bawah, tengah, dan atas dari data terurut 3, 4, 5, 6, 8, 8, 8, 9, 9, dan 10 adalah Q1= 6, Q2 = 8, dan Q3 = 9. Apa itu nilai kuartil? Bagaimana cara menghitung kuartil dari data kelompok? Bagaimana bentuk-bentuk contoh soal kuartil? Sobat idschool dapat mencari tahu jawabannya melalui ulasan cara menghitung kuartil atas, tengah, dan bawah melalui ulasan-ulasan berikut. Table of Contents Apa Itu Nilai Kuartil? Rumus Kuartil Data Kelompok Soal 1 – Cara Menghitung Kuartil Atas Soal 2 – Cara Menghitung Kuartil dari Tabel Data Kelompok Soal 3 – Cara Menghitung Kuartil Tengah dari Histogram Data Kelompok Soal 4 – Mencari Frekuensi Kelas Kuartil dari Tabel Data Kelompok Soal 5 – Cara Menghitung Kuartil dan Frekuensi Kelas Kuartil Soal 6 – Variasi Bentuk Soal Cara Menghitung Kuartil Soal 7 – Variasi Bentuk Soal Cara Menghitung Kuartil Apa Itu Nilai Kuartil? Kuartil adalah nilai pembatas pada data terurut yang dibagi menjadi empat bagian sama banyak. Ada tiga nilai kuartil yang terdiri dari kuartil bawah Q1, tengah Q2, dan atas Q3. Nilai kuartil bawah, tengah, dan atas pada data tunggal dapat diperoleh dengan membagi data terurut menjadi dua sama banyak sehingga dapat diperoleh nilai kuartil tengah Q1. Selanjutnya, setiap bagian dari dua bagian data terbagi tersebut dibagi lagi menjadi dua sama banyak. Dari 1/2 bagian data terurut pertama akan diperoleh nilai kuartil bawah Q1, sedangkan dari 1/2 bagian data terurut lainnya akan diperoleh kuartil atas Q3. Seperti yang ditunjukkan pada contoh pada awal pembahasan pada bagian awal paragraf. Pada data kelompok, nilai kuartil berada pada suatu interval kelas, sehingga membutuhkan suatu cara menghitung kuartil untuk data kelompok. Cara menghitung kuartil atas, tengah, dan bawah pada data kelompok dapat menggunakan rumus kuartil data kelompok. Baca Juga Cara Menghitung Median Data Kelompok +Contoh Soal dan Pembahasannya Rumus Kuartil Data Kelompok Pada penyajian data kelompok, nilai kuartil terletak pada suatu interval kelas. Di mana, nilainya dapat ditentukan dengan bantuan rumus kuartil data kelompok. Q1 kuartil bawah nilai yang menjadi batas dari data terurut yang paling rendah sampai 1/4 bagian data terurut pertama. Q2 kuartil tengah nilai yang membagi banyak data menjadi dua bagian yang sama banyak. Nilai kuartil tengah Q2 disebut juga sebagai median yaitu nilai yang terletak antara dua bagian dari data terurut. Q3kuatil atas adalah nilai pembatas antara 3/4 data terurut pertama dengan 1/4 data terakhir. Rumus kuartil bawah, tengah, dan atas yang dapat digunakan paca cara menghitung kuartil data kelompok sesuai dengan persamaan berikut. Baca Juga Rumus Mean Median Modus pada Data Tunggal Selanjutnya sobat idschool dapat mempelajari bagaimana penggunaan rumus dan cara menghitung kuartil data kelompok dengan berbagai bentuk soal. Setiap contoh soal yang diberikan dilengkapi dengan pembahasan bagaimana cara menghitung kuartil. Sobat idschool dapat menggunakan pembahasan cara menghitung kuartil tersebut sebagai tolak ukur keberhasilan mengerjakan soal. Selamat Berlatih! Tabel berikut menyajikan data berat badan sekelompok siswa. Kuartil atas data dalam tabel tersebut adalah ….A. 664/6B. 665/6C. 671/6D. 675/6E. 681/6 PembahasanPertama, sobat idschool perlu mengetahui banyak data dari penyajian data yang diberikan yaitu dengan menjumlahkan seluruh frekuensinya. Banyak data nn = 3 + 6 + 10 + 12 + 15 + 6 + 4n = 56 Dari banyak data tersebut dapat diketahui letak nilai kuartil atas Q3. Nilai Q3 terletak antara data ke-3/4Γ—56 [data ke-42] dan data ke-3/4Γ—56 + 1 [data ke-43] yaitu interval kelas 65–69. Nilai batas bawah kelas Q3 adalah Tb = 64,5 dengan frekuensi kelas kuartil atas adalah f Q3 = 12. Dengan frekuensi komulatif kurang dari kelas kuartil atas adalah fkk = 3 + 6 + 10 + 12 = 31. Panjang kelas pada penyajian tabel data kelompok adalah β„“ = 49,5 – 44,5 = 54,5 – 49,5 = … = 5. Cara menghitung kuartil atas dapat dilakukan seperti pada langkah berikut. Jadi, kuartil atas data dalam tabel tersebut adalah 681/6. Jawaban E Soal 2 – Cara Menghitung Kuartil dari Tabel Data Kelompok PembahasanPertama, hitung banyak data dari penyajian data yang diberikan dengan cara menjumlahkan semua nilai f frekuensi. Banyak data nn = 4 + 10 + 18 + 24 + 16 + 8n = 80 Letak nilai kuartil ketiga Q3 terdapat di antara data ke–3/4 Γ— 80 data ke–3/4 Γ— 80 + 1 yaitu antara data ke-60 dan data ke-61 interval kelas 63 – 67. Sehingga dapat diketahui bahwa batas bawah kelas Q3 Tb = 62,5; frekuensi kelas Q3 fQ3 = 16; dan frekuensi komulatif kurang dari kelas Q3 fkk = 56. Di mana panjag kelas pada penyajian data kelompok tersebut adalah β„“ = 47,5 – 42,5 = 52,5 – 47,5 = … = 5. Cara menghitung kuartil atas atau nilai kuartil ketiga Q3 Jadi, kuartil ketiga dari data yang disajikan dalam histogram berikut adalah 63,75 Jawaban B Baca Juga Ukuran Penyebaran Data – Jangkauan, Hamparan, dan Kuartil Soal 3 – Cara Menghitung Kuartil Tengah dari Histogram Data Kelompok Perhatikan data kelompok pada histogram berikut! Kuartil ke-2 dari data berat badan yang ditunjukkan pada histogram di atas adalah ….A. 50,5 kgB. 51,5 kgC. 52,5 kgD. 53,5 kgE. 54,5 kg PembahasanPertama, sobat idschool perlu mengetahui banyak data pada penyajian histogram dengan cara menjumlahkan semua nilai frekuensinya. Banyak datan = 2 + 6 + 13 + 10 + 9 + 7 + 3n = 50 Letak kuartil ke-2 Q2 atau kuartil tengah berada di antara data ke-2/4 Γ— 50 data ke-2/4 Γ— 50 + 1 yaitu anatar data ke-25 dan data ke-26 kelas dengan titik tengah 52. Sehingga dapat diperoleh batas bawah kelas dengan kuartil tengah adalah Tb = 52 + 47 2 = 49,5. Frekuensi kelas kuartil tengah adalah fQ2 = 9 dan frekuensi komulatif kurang dari kelas kuartil tengah adalah fkk = 21. Panjang kelas pada penyajian data kelompok bentuk histogram tersebut adalah β„“ = 39,5 – 34,5 = 44,5 – 39,5 = …. = 5. Cara menghitung kuartil tengah Jadi, kuartil ke-2 Q2 dari data berat badan yang ditunjukkan pada histogram di atas adalah 51,5 kg Jawaban B Soal 4 – Mencari Frekuensi Kelas Kuartil dari Tabel Data Kelompok Baca Juga Cara Menghitung Desil dan Persentil Data Kelompok PembahasanDiketahui nilai kuartil atas adalah 49,25 sehingga letak nilai kuartil atas berada di interval kelas 44 – 49. Berdasarkan keterangan yang diberikan pada soal dapat diperoleh informasi-informasi berikut. Banyak data n = 4 + 6 + 6 + 10 + k + 8 + 4 = 38 + k Nilai kuartil atas Q3 = 49,25 Batas bawah kelas kuatil Q3 Tb = 43,5 Frekuensi komulatif kurang dari kelas Q3 fkk = 26 Frekuensi kelas kuartil atas fQ3 = k Panjang kelas β„“ = 25,5 – 19,5 = 31,5 – 25,5 = … = 6 Mencari nilai kQ3 = Tb + β„“ Γ— 3/4Γ—n – fkk fQ3 49,25 = 43,5 + 6Γ—3/4Γ—38 + k – 26 k49,25 – 43,5 = 6Γ—3/4Γ—38 + k – 26 k5,75k = 9/2Γ—38 + 9/2k – 6Γ—265,75k – 9/2k =171 – 1565,75k – 9/2k = 151,25k = 15k = 15 1,25 = 12 Sehingga diperoleh nilai k = 12 Jawaban D Soal 5 – Cara Menghitung Kuartil dan Frekuensi Kelas Kuartil Perhatikan penyajian data kelompok dalam bentuk histogram berikut! Jika kuartil bawah dari data nilai ulangan harian di atas adalah 73,5 maka nilai q = ….A. 10B. 11C. 12D. 13E. 14 PembahasanDiketahui nilai kuartil bawah adalah Q1 = 73,5 sehingga nilai kuartil terletak pada kelas dengan titik tengah 75. Dengan demikian dapat diperoleh nilai-nilai seperti berikut Banyak data n = 3 + 5 + q + 9 + 8 + 5 = 30 + q Batas bawah kelas letak Q1 Tb = 75 + 70 2 = 72,5 Frekuensi kelas kuartil bawah fQ1 = q Frekuensi komulatif kurang dari kelas kuartil bawah Q1 fkk = 8 Cara menghitung frekuensi kuartil bawah Q1 Jawaban A Baca Juga Penyajian Data dalam Bentuk Ogive Soal 6 – Variasi Bentuk Soal Cara Menghitung Kuartil Diketahui 10 bilangan genap berurutan yang nilainya berbeda. Jika kuartil pertama bilangan-bilangan tersebut adalah 32 maka mediannya adalah ….A. 34B. 35C. 36D. 37E. 38 PembahasanMisalkan nilai 10 bilangan genap berurutan tersebut adalah x1, x2, . . ., dan x10. Letak median atau kuartil kedua Q2 berada di antara bilangan e dan f. Sedangkan kuartil bawah dari data sepuluh bilangan tersebut adalah nilai x3 = 32. Diketahui bahwa sepuluh bilangan tersebut merupakan bilangan genap berurutan yang nilainya berbeda. Sehingga, nilai x5 dan x6 berturut-turut adalah 36 dan 38. Jadi, nilai mediannya adalah Q2 = 36 + 38 2 = 37. Jawaban D Soal 7 – Variasi Bentuk Soal Cara Menghitung Kuartil Sepuluh siswa mengikuti suatu tes. Jika nilai tes tersebut memiliki jangkauan 45 dengan nilai terendah 50 dan kuartil ketiga 90 maka tiga nilai tertinggi siswa tersebut yang paling mungkin adalah ….A. 90; 95; dan 100B. 85; 90; dan 95C. 90; 90; dan 100D. 90; 90; dan 95E. 85; 95; dan 95 PembahasanMisalkan data terurut untuk nilai kesepuluh siswa yang mengikuti tes adalah x1, x2, …, dan x10. Sehingga, berdasarkan keterangan pada soal dapat diperoleh informasi-informasi seperti berikut. Jangkauan x10 – x1 = 45 Nilai terendah x1 = 50 Kuartil ketiga Q3 = 90 Mencari nilai tertinggi x10 dari persamaan x10 – x1 = 45x10 – 50 = 45x10 = 45 + 50 = 95 Diketahui bahwa kuartil ketiga Q3 atau kuarti atas dari data terurut x1, x2, …, dan x10 adalah Q3 = x8 = 90. Jadi, tiga nilai tertinggi siswa tersebut yang paling mungkin adalah 90; 90; dan 95. Jawaban D Demikanlah tadi ulasan cara menghitung kuartil atas, tengah, dan bawah. Terima kasih sudah mengunjungi halaman cara menghitung kuartil dari idschooldotnet, semoga bermanfaat! Baca Juga Bentuk-Bentuk Soal pada TPS UTBK SBMPTN - Kuartil Q adalah suatu nilai yang membagi data menjadi empat bagian sama besar. Dikutip dari Buku Target Nilai Rapor 10 Kupas Habis Semua Pelajaran Kelas IX SMP/MTs 2011 oleh Tim Guru Indonesia, kuartil terdiri atas tiga macam, yaitu Kuartil bawah Q1 Kuartil tengah/median Q2 Kuartil atas Q3 ilustrasi kuartil Baca juga Rumus Jangkauan, Kuartil, Simpangan Rata-rata, Variansi, dan Deviasi Standar pada Ukuran Penyebaran Data Berkelompok Cara menentukan kuartil Berikut tata cara menentukan kuartil Urutkan data dari yang terkecil sampai dengan yang terbesar. Tentukan nilai Q2, caranya sama dengan menentukan nilai median. Tentukan Q1 dengan cara membagi data di bawah Q2 menjadi dua bagian sama besar. Tentukan Q3 dengan cara membagi data di atas Q2 menjadi dua bagian sama besar. Jangkauan interkuartil Jangkauan interkuartil hamparan adalah selisih antara kuartil atas dengan kuartil bawah. Simpangan kuartil Simpangan kuartil jangkauan semi interkuartil adalah setengah kali selisih kuartil atas dengan kuartil bawah. Baca juga Rumus Kuartil Data Tunggal Genap dan Data KelompokContoh soal Nilai ulangan Rini 6,7,7,8,7,9,5,6,8. Tentukan kuartil bawah, kuartil tengah, dan kuartil atas! Jawab Pertama, kita urutkan datanya terlebih dulu dari nilai paling rendah ke yang paling besar. Data diurutkan menjadi Data setelah diurutkan Sebab, data tersebut merupakan data ganjil, maka mediannya terletak di tengah, yaitu 7. Baca juga Pengertian dan Rumus Mean, Median, Modus Pada Data Berkelompok Dapatkan update berita pilihan dan breaking news setiap hari dari Mari bergabung di Grup Telegram " News Update", caranya klik link kemudian join. Anda harus install aplikasi Telegram terlebih dulu di ponsel. Misalkan adalah banyaknya data, adalah data setelah di urutkan mulai dari data ke- hingga data ke-, adalah kuartil bawah, adalah kuartil tengah, adalah kuartil atas. Langkah pertama Urutkan data dari yang terkecil hingga yang terbesar dan cari banyaknya data sebagai berikut. Data setelah di urutkan Banyak data Langkah kedua Tentukan kuartil bawah dengan menggunakan rumus kuartil data tunggal berikut. Langkah ketiga Tentukan kuartil tengah dengan menggunakan rumus kuartil data tunggal berikut. Langkah keempat Tentukan kuartil atas dengan menggunakan rumus kuartil data tunggal berikut. Dengan demikian, nilai kuartil bawah, kuartil tengah dan kuartil atas secara berurutan pada soal tersebut adalah Pengertian dan Rumus Cara Menghitung dan Mencari Kuartil Bawah, Tengah dan Kuartil Atas beserta Contoh Soal Kuartil – Pada artikel kali akan memberikan pembahasan mengenai segala sesuatu mengenai kuartil. Mulai dari pengertian kuartil, cara menghitung kuartil atas, kuartil tengah dan kuartil bawah, hingga rumus dan contoh soal beserta jawabannya. Simak terus artikel ini Kuartil QuartilApa itu Kuartil? Kuartil adalah nilai-nilai yang membagi data yang telah diurutkan ke dalam empat bagian yang nilainya sama besar. Dalam menentukan letak kuartil data tunggal, anda harus melihat kondisi jumlah data n terlebih pada suatu data dapat diperoleh dengan cara membagi data tersebut secara terurut menjadi empat bagian yang memiliki nilai sama sendiri terdiri atas tiga macam, yaituKuartil bawah Q1Kuartil tengah/median Q2Kuartil atas Q3Apabila suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengan dan kuartil atas adalah sebagai berikutGari gambar di atas dapat diketahui letak kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 pada suatu tahu kan, pengertian dari kuartil dan cara membaginya. Sekarang kita berlanjut untuk memperlajari rumus dan cara menghitung Cara Menghitung dan Mencari KuartilCara menentukan kuartil adalah sebagai data dari yang terkecil hingga dengan data yang Q2 atau Q1 dengan membagi data di bawah Q2 menjadi dua bagian yang sama Q3 dengan membagi data di atas Q2 menjadi dua bagian sama Soal KuartilUntuk lebih jelasnya, pelajarilah contoh soal kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 dari data-data 20 35 50 45 30 30 25 40 45 30 35b. 11 13 10 10 12 15 14 12Jawaba. Urutkan data terlebih dahulub. Urutkan data terlebih itulah dia penjelasan mengenai perngertian kuartil, serta cara menghitung kuartil atas, kuartil tengah dan kuartil bawah, hingga rumus dan contoh soal beserta dengan jawabannya. Semoga artikel ini bermanfaat, selamat belajar!Baca JugaSifat-sifat Fisika dan Kimia suatu Zat serta ContohnyaPengertian dan Ciri-ciri Reaksi Kimia serta contoh reaksi kimia dalam kehidupanPengertian Bilangan Asli dan Contohnya Contents1 Pengertian Kuartil Serta Rumus dan Contoh Kuartil Bawah, Kuartil Tengah dan Kuartil Pengertian Kuartil Quartil Rumus Cara Menghitung dan Mencari Contoh Pertanyaan Share thisPada artikel kali akan memberikan pembahasan mengenai segala sesuatu mengenai kuartil. Mulai dari pengertian kuartil, rumus menghitung kuartil atas, kuartil tengah dan kuartil bawah, hingga rumus dan contoh soal beserta jawabannya. Baca terus pembahasan terbaru di bawah Kuartil QuartilApa itu Kuartil? Kuartil adalah nilai-nilai yang membagi data yang telah diurutkan ke dalam empat bagian yang nilainya sama besar. Dalam menentukan letak kuartil data tunggal, anda harus melihat kondisi jumlah data n terlebih pada suatu data dapat diperoleh dengan cara membagi data tersebut secara terurut menjadi empat bagian yang memiliki nilai sama sendiri terdiri atas tiga macam, yaituKuartil bawah Q1Kuartil tengah/median Q2Kuartil atas Q3Apabila suatu data dilambangkan dengan garis lurus, letak kuartil bawah, kuartil tengan dan kuartil atas adalah sebagai berikutGari gambar di atas dapat diketahui letak kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 pada suatu tahu kan, pengertian dari kuartil dan cara membaginya. Sekarang kita berlanjut untuk memperlajari rumus dan cara menghitung Cara Menghitung dan Mencari KuartilCara menentukan kuartil adalah sebagai data dari yang terkecil hingga dengan data yang Q2 atau Q1 dengan membagi data di bawah Q2 menjadi dua bagian yang Q3 dengan membagi data di atas Q2 menjadi dua bagian yang Pertanyaan KuartilUntuk lebih jelasnya, pelajari contoh pertanyaan berikut kuartil bawah Q1, kuartil tengah Q2, dan kuartil atas Q3 dari data 35 50 45 30 30 25 40 45 30 3511 13 10 10 12 15 14 12JawabUrutkan data terlebih dahuluUrutkan data terlebih dahuluDemikianlah ulasan yang membahas tentang Pengertian Kuartil Serta Rumus dan Contoh Kuartil Bawah, Kuartil Tengah dan Kuartil Atas yang bisa untuk Anda pelajri. Semoga dengan adanya ulasan ini bisa membantu dan bermanfaat untuk Anda semua. Terima kasih sudah membaca ulasan ini.

kuartil bawah dan kuartil atas